12 research outputs found

    STRUCTURE-FUNCTION RELATIONSHIPS AND ACTION MECHANISM OF KRAIT NATRIURETIC PEPTIDE

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Defining basic rules for hardening influenza A virus liquid condensates

    Get PDF
    In biological systems, liquid and solid-like biomolecular condensates may contain the same molecules but their behaviour, including movement, elasticity and viscosity, is different on account of distinct physicochemical properties. As such, it is known that phase transitions affect the function of biological condensates and that material properties can be tuned by several factors including temperature, concentration and valency. It is, however, unclear if some factors are more efficient than others at regulating their behaviour. Viral infections are good systems to address this question as they form condensates de novo as part of their replication programmes. Here, we used influenza A virus liquid cytosolic condensates, A.K.A viral inclusions, to provide a proof of concept that liquid condensate hardening via changes in the valency of its components is more efficient than altering their concentration or the temperature of the cell. Liquid IAV inclusions may be hardened by targeting vRNP interactions via the known NP oligomerizing molecule, nucleozin, both in vitro and in vivo without affecting host proteome abundance nor solubility. This study is a starting point for understanding how to pharmacologically modulate the material properties of IAV inclusions and may offer opportunities for alternative antiviral strategies.info:eu-repo/semantics/publishedVersio

    Silicon surface texturing with a combination of potassium hydroxide and tetra-methyl ammonium hydroxide etching

    No full text
    A two step silicon surface texturing, consisting of potassium hydroxide (KOH) etching followed by tetra-methyl ammonium hydroxide etching is presented. This combined texturing results in 13.8% reflectivity at 600 nm compared to 16.1% reflectivity for KOH etching due to the modification of microstructure of etched pyramids. This combined etching also results in significantly lower flat-band voltage (V-FB) (-0.19V compared to -1.3 V) and interface trap density (D-it) (2.13 x 10(12) cm(-2) eV(-1) compared to 3.2 x 10(12) cm(-2) eV(-1)). (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4776733

    Aggregation and disaggregation features of the human proteome

    No full text
    Abstract Protein aggregates have negative implications in disease. While reductionist experiments have increased our understanding of aggregation processes, the systemic view in biological context is still limited. To extend this understanding, we used mass spectrometry‐based proteomics to characterize aggregation and disaggregation in human cells after non‐lethal heat shock. Aggregation‐prone proteins were enriched in nuclear proteins, high proportion of intrinsically disordered regions, high molecular mass, high isoelectric point, and hydrophilic amino acids. During recovery, most aggregating proteins disaggregated with a rate proportional to the aggregation propensity: larger loss in solubility was counteracted by faster disaggregation. High amount of intrinsically disordered regions were associated with faster disaggregation. However, other characteristics enriched in aggregating proteins did not correlate with the disaggregation rates. In addition, we analyzed changes in protein thermal stability after heat shock. Soluble remnants of aggregated proteins were more thermally stable compared with control condition. Therefore, our results provide a rich resource of heat stress‐related protein solubility data and can foster further studies related to protein aggregation diseases

    Thermal proteome profiling for interrogating protein interactions

    No full text
    Abstract Thermal proteome profiling (TPP) is based on the principle that, when subjected to heat, proteins denature and become insoluble. Proteins can change their thermal stability upon interactions with small molecules (such as drugs or metabolites), nucleic acids or other proteins, or upon post‐translational modifications. TPP uses multiplexed quantitative mass spectrometry‐based proteomics to monitor the melting profile of thousands of expressed proteins. Importantly, this approach can be performed in vitro, in situ, or in vivo. It has been successfully applied to identify targets and off‐targets of drugs, or to study protein–metabolite and protein–protein interactions. Therefore, TPP provides a unique insight into protein state and interactions in their native context and at a proteome‐wide level, allowing to study basic biological processes and their underlying mechanisms

    A Defined α-Helix in the Bifunctional O-Glycosylated Natriuretic Peptide TcNPa from the Venom of 'Tropidechis carinatus'

    No full text
    Natriuretic peptides (NP) play important roles in human cardiac physiology through their guanylyl cyclase receptors NPR-A and NPR-B. Described herein is a bifunctional O-glycosylated natriuretic peptide, TcNPa, from 'Tropidechis carinatus' venom and it unusually targets both NPR-A and NPR-B. Characterization using specific glycosidases and ETD-MS identified the glycan as galactosyl-β(1-3)-N-acetylgalactosamine (Gal-GalNAc) and was α-linked to the C-terminal threonine residue. TcNPa contains the characteristic NP 17-membered disulfide ring with conserved phenylalanine and arginine residues. Both glycosylated and nonglycosylated forms were synthesized by Fmoc solid-phase peptide synthesis and NMR analysis identified an α-helix within the disulfide ring containing the putative pharmacophore for NPR-A. Surprisingly, both forms activated NPR-A and NPR-B and were relatively resistant towards proteolytic degradation in plasma. This work will underpin the future development of bifunctional NP peptide mimetics
    corecore